jueves, 28 de mayo de 2009

circuitos de coriente alterna


El uso de circuitos es parte de la vida diaria pues aparatos cotidianos que hacen un poco más fácil nuestro entorno tiene como base un circuito eléctrico para su funcionamiento, ahora la información que se va a estudiar se basa en el circuito RCL para lo cual se necesitan ciertos conceptos básicos de electromagnetismo.
La presencia de inductancia y capacitancia en el mismo circuito produce un sistema de segundo orden, es decir uno caracterizado por la ecuación diferencial lineal que incluye una derivada de segundo orden o dos ecuaciones diferenciales lineales simultáneas de primer orden.
Se observará que la presencia de inductancia y capacitancia en el mismo circuito conduce a una respuesta que toma diferentes formas funcionales para circuitos que tienen la misma configuración, pero distintos valores de los elementos. En primer lugar consideremos el sistema de primer orden sin fuentes, a la era esta respuesta se la llamo natural, viendo completamente determinada por el tipo de elementos pasivos de la red, la forma que estaban conectados y las condiciones iníciales establecidas para la energía almacenada.
La respuesta exponencial era invariablemente una función exponencial decreciente del tiempo, teniendo a un valor constante al hacerse infinito el tiempo

CIRCUITO RC
Los circuitos RC son circuitos que están compuestos por una resistencia y un condensador.
Se caracteriza por que la corriente puede variar con el tiempo. Cuando el tiempo es igual a cero, el condensador está descargado, en el momento que empieza a correr el tiempo, el condensador comienza a cargarse ya que hay una corriente en
el circuito. Debido al espacio entre las placas del condensador, en el circuito no circula corriente, es por eso que se utiliza una resistencia.
Cuando el condensador se carga completamente, la corriente en el circuito es igual a cero.
La segunda regla de Kirchoff dice: V = (IR) - (q/C)
Donde q/C es la diferencia de potencial en el condensador.
En un tiempo igual a cero, la corriente será: I = V/R cuando el condensador no se ha cargado.
Cuando el condensador se ha cargado completamente, la corriente es cero y la carga será igual a: Q = CV
CARGA DE UN CONDENSADOR
Ya se conoce que las variables dependiendo del tiempo serán I y q. Y la corriente I se sustituye por dq/dt (variación de la carga dependiendo de la variación del tiempo):
(dq/dt)R = V - (q/C)
dq/dt = V/R - (q/(RC))
Esta es una ecuación
Diferencial. Se pueden dq/dt = (VC - q)/(RC)
Separar variable dq/(q - VC) = - dt/(RC)
Al integrar se tiene ln [ - (q - VC)/VC)] = -t/(RC)
Despejando q q dt = C V [(1 - e-t/RC )] = q (1- e-t/RC )
El voltaje será ) = V
DESCARGA DE UN CONDENSADOR
Debido a que la diferencia de potencial en el condensador es IR = q/C, la razón de cambio de carga en el condensador determinará la corriente en el circuito, por lo tanto, la ecuación que resulte de la relación entre el cambio de la cantidad de carga dependiendo del cambio en el tiempo y la corriente en el circuito, estará dada remplazando I = dq/dt en la ecuación de diferencia de potencial en el condensador:
q = Q e-t/RC
Donde Q es la carga máxima
La corriente en función del tiempo entonces, resultará al derivar esta ecuación respecto al tiempo:
I = Q/(RC) e-t/RC
Se puede concluir entonces, que la corriente y la carga decaen de forma exponencial.
CIRCUITO RL
Los circuitos RL son aquellos que contienen una bobina (inductor) que tiene auto inductancia, esto quiere decir que evita cambios instantáneos en la corriente. Siempre se desprecia la auto inductancia en el resto del circuito puesto que se considera mucho menor a la del inductor.
Para un tiempo igual a cero, la corriente comenzará a crecer y el inductor producirá igualmente una fuerza electromotriz en sentido contrario, lo cual hará que la corriente no aumente. A esto se le conoce como fuerza contraelectromotriz.
Esta fem está dada por: V = -L (inductancia) dI/dt
Debido a que la corriente aumentará con el tiempo, el cambio será positivo (dI/dt) y la tensión será negativa al haber una caída de la misma en el inductor.
Según kirchhoff: V = (IR) + [L (dI / dt)]
IR = Caída de voltaje a través de la resistencia.
Esta es una ecuación diferencial y se puede hacer la sustitución:
x = (V/R) - I es decir; dx = -dI
Sustituyendo en la ecuación: x + [(L/R)(dx/dt)] = 0
dx/x = - (R/L) dt
Integrando: ln (x/xo) = -(R/L) t
Despejando x: x = xo e -Rt / L
Debido a que xo = V/R
El tiempo es cero
Y corriente cero V/R - I = V/R e -Rt / L
I = (V/R) (1 - e -Rt / L)
El tiempo del circuito está representado por
= L/R
I = (V/R) (1 - e - 1/
)
Donde para un tiempo infinito, la corriente de la malla será I = V/R. Y se puede considerar entonces el cambio de la corriente en el tiempo como cero.
Para verificar la ecuación que implica a
y a I, se deriva una vez y se reemplaza en la inicial: dI/dt = V/L e - 1/
Se sustituye: V = (IR) + [L (dI / dt)]
V = [ (V/R) (1 - e - 1/
)R + (L V/ L e - 1/
)]
V - V e - 1/
= V - V e - 1/
OSCILACIONES EN UN CIRCUITO LC
Cuando un condensador se conecta a un inductor, tanto la corriente como la carga den el condensador oscila. Cuando existe una resistencia, hay una disipación de energía en el sistema porque una cuanta se convierte en calor en la resistencia, por lo tanto las oscilaciones son amortiguadas. Por el momento, se ignorará la resistencia.
En un tiempo igual a cero, la carga en el condensador es máxima y la energía almacenada en el campo eléctrico entre las placas es U = Q2máx/(2C). Después de un tiempo igual a cero, la corriente en el circuito comienza a aumentar y parte de la energía en el condensador se transfiere al inductor. Cuando la carga almacenada en el condensador es cero, la corriente es máxima y toda la energía está almacenada en el campo eléctrico del inductor. Este proceso se repite de forma inversa y así comienza a oscilar.
En un tiempo determinado, la energía total del sistema es igual a la suma de las dos energías (inductor y condensador): U = Uc + UL
U = [Q2/ (2C)] + (LI2/2)

CIRCUITO RLC
Un circuito RLC es aquel que tiene como componentes una resistencia, un condensador y un inductor conectados en serie
En un tiempo igual a cero, el condensador tiene una carga máxima (Qmáx). Después de un tiempo igual a cero, la energía total del sistema está dada por la ecuación presentada en la sección de oscilaciones en circuitos LC
U = [ Q2/(2C) ] + ( LI2/2 )
En las oscilaciones en circuitos LC se había mencionado que las oscilaciones no eran amortiguadas puesto que la energía total se mantenía constante. En circuitos RLC, ya que hay una resistencia, hay oscilaciones amortiguadas porque hay una parte de la energía que se transforma en calor en la resistencia.
El cambio de la energía total del sistema dependiendo del tiempo está dado por la disipación de energía en una resistencia:
dU/dt = - I2R
Luego se deriva la ecuación de la energía total respecto al tiempo y se remplaza la dada: LQ´ + RQ´ + (Q/C) = 0
Se puede observar que el circuito RCL tiene un comportamiento oscilatorio amortiguado:
m(d2x/dt2) + b(dx/dt) + kx = 0
Si se tomara una resistencia pequeña, la ecuación cambiaría a :
Q = Qmáx e -(Rt/2L)Cos wt
w = [ (1/LC) - (R/2L)2 ] 1/2
Entre más alto el valor de la resistencia, la oscilación tendrá amortiguamiento más veloz puesto que absorbería más energía del sistema. Si R es igual a (4L/C) ½ el sistema se encuentra sobreamortiguado.
CONCLUSIONES
Se visualizó la configuración general para los circuitos RC, RL y RLC.
Se establecieron las ecuaciones para carga y descarga de un condensador en los circuitos RC.
Se mostró la ecuación general para la corriente en un circuito RL, así como el tiempo dado por la relación entre resistencia e inductancia.
Se entendieron las propiedades de los circuitos RLC.
Se expuso las ecuaciones generales para el análisis de circuitos RLC.

OBSERVACIONES
Un circuito tiene una función específica como se ha estudiado, pero una idea de mejoría puede ser el generalizar cada circuito y poder así, obtener funciones combinadas de todos los circuitos, es decir, que al generalizar cada circuito en sus diagramas no serían tan complejos y diversos, haciendo más fácil su utilización.
RECOMENDACIONES
El estudio de circuitos lleva en si un conceptos básicos se deben ser analizados para poder entender que es un circuito RCL
Se debe distinguir que es un elemento pasivo y uno activo, saber donde están ubicados en el circuito
Para un estudio de redes el RCL se convierte en un tema importante para su diseño y utilización